A FORMAL SYNTHESIS OF (+)MILBEMYCIN β_3^1 : A WITTIG APPROACH

Raymond Baker*, Mary J. O'Mahony and Christopher J. Swain

Department of Chemistry, The University, Southampton SO9 5NH, England

Abstract: A new route has been established to generate the C_{14} - C_{15} trisubstituted double bond of milbemycin β_3 by reaction of a Wittig reagent with the appropriate spiroacetal aldehyde. The product of this reaction, after conversion to the iodide and enantiospecific alkylation to generate the C_{12} methyl group, has been elaborated to an intermediate previously involved in a total synthesis of milbemycin β_3 .

The milbemycins 1 and avermectins 2 have been the target of considerable synthetic endeavour, and to date several total syntheses of milbemycin β_3 have been reported 3 , 4 . There have also been several reports of studies towards the preparation of structural sub-units of the more complex milbemycins and avermectins 5 . In this communication we describe an alternative route to the spiroacetal moiety of milbemycin 3 and an alternative strategy for its incorporation into the macrolide ring, a strategy which would also allow a facile entry into the avermectin series.

The starting point for this synthesis was the readily available (S)-methyl 3-hydroxy-2-methylpropionate ($\underline{1}$). Sequential protection of the alcohol as its THP ether and reduction of the ester gave the alcohol ($\underline{2}$) in 95% yield. Swern oxidation gave the corresponding aldehyde ($\underline{3}$), chelation controlled cuprate attack then gave the desired threo product ($\underline{4}$) as the major product (>20:1) in 90% yield. The secondary alcohol was then protected as its benzyl ether ($\underline{5}$), acid catalysed removal of the THP

Avermectin A_{2b} R = oleandrosyl-oleandrosyl

Milbemycin β_3

Reagents: i)DHP/Et₂O/CSA; ii)LiAlH₄/Et₂O; iii)DMSO/COCl₂; iv)NEt₃; v)Me₂CuLi/Et₂O -20°C; vi)NaH/THF; vii)PhCH₂Br; viii)MeOH/H⁺; ix)Ph₃P=CBr₂/THF 0°C; x)2 x \underline{n} -BuLi/THF -80°C.

protecting group and subsequent Swern oxidation afforded the aldehyde $(\underline{6})$ in 70% overall yield. The aldehyde was then converted, $\underline{\text{via}}$ the dibromide $(\underline{7})$, to the acetylene $(\underline{8})$, $[\alpha]^{20}_{D} = -8.4^{\circ}$ (c 1.5, CH_2Cl_2 , bp 58-60°C at 17 mm Hg, (60%) (shown to be >95% ee by preparation of the MTPA ether).

The acetylene (8) was coupled to the lactone (9)7 and converted to the known spiroacetal (10) by the procedure reported previously⁷. Treatment with one equivalent of p-toluenesulphonyl chloride in pyridine yielded the primary tosylate selectively (70%); the secondary alcohol was then protected as its t-butyldiphenylsilyl ether (11) (100%). Nucleophilic displacement of the tosylate by NaCN in DMSO (80°C) yielded the corresponding nitrile (80%). Dibal reduction to the aldehyde and subsequent Wittig reaction gave the α,β -unsaturated ester (12)* in a 60% overall yield; $[\alpha]^{D}$ = +38° (c 0.4, CH_2Cl_2); v_{max} 1710 (C=0), 1650, 1450, 1380, 1110, 830, 740, 705 cm⁻¹; $\delta_{\rm H}$ (360MHz) (CDCl₃), 7.6 (4H, m, Ar), 7.3 (6H, m, Ar), 6.77 (1H, dd, J=2H, H_1), 4.14 (1H, m, H_f), 4.1 (2H, q, J=7Hz, $\sim C_{H2}\sim CH_3$), 3.3 (1H, m, H_h), 3.0 (1H, dq, J=6,11 H_a), 2.2 (2H, m, $2xH_i$), 1.85 (1H, dd, H_e), 1.79 $(3H, s, Me_k), 1.65$ (1H, ddd, H_g), 1.4-1.6 (5H, m, H, $2xH_g$, $2xH_d$), 1.26 (3H, t, J=7, MeCH₂), 1.27 (2H, m, H_q, H_e), 1.05 (9H, s, \underline{t} -Bu), 0.95 (3H, d, J=6Hz, Me_a), 0.75 (3H, d, J=7, Me_b).

^{*13}C NMR indicates single double bond isomer.

Reagents: i)TsCl/pyr; ii)t-BuPh2SiCl/DMF/imidazole; iii)NaCN/DMSO/80°C; iv)Dibal/CH2Cl2; v)EtO2CC(Me)PPh3; vi)MeSO2Cl/pyr/DMAP; vii)NaI/THF; viii)LiAlH4/Et2O; ix)PhS-/MeOH; x)Oxone.

Dibal reduction yielded the key allylic alcohol $(\underline{13})$ (65%), conversion to the very unstable allylic iodide $(\underline{14})$ and subsequent alkylation of the oxazolidone $(\underline{15})^8$ yielded the alkylated product $(\underline{16})$ (80%) in which the stereochemistry of the remote methyl at C_{12} had been generated. In addition a small amount (15%) of another double bond isomer was isolated 10 .

Reductive removal of the chiral auxiliary and a simple functional group modification then allowed the conversion to the sulphone $(\underline{17})$ which has previously been incorporated into a total synthesis of (+) milbemycin β_3 ³.

This approach also provides a route to the avermectins. Oxidation of the allylic alcohol $(\underline{13})$ to the unsaturated aldehyde followed by a directed aldol condensation would allow the introduction of the C_{13} oxygenation required for the avermectins (Scheme).

References

- 1. H. Mishima, M. Kurabayashi, C. Tanura, S. Sato, H. Kuwano and A. Saito, Tetrahedron Lett., 1975, 711
- G. Albers-Schonberg, B.H. Arison, J.C. Chabala, A.W. Douglas,
 D. Eskola, M.H. Fisher, A. Lusi, H. Mrozik, J.L. Smith and
 R.L. Tolman, J.Amer.Chem.Soc., 1981, 103, 4216
- R. Baker, M.J. O'Mahony and C.J. Swain, <u>J.Chem.Soc., Chem.Commun.</u>, 1985, 1326
- S.R. Schow, J.D. Bloom, A.S. Thompson, K.N. Winzenberg and A.B. Smith III, J.Amer.Chem.Soc., 1982, 104, 4015; D.R. Williams, B.A. Barner, K. Nishitani and J.G. Phillips, J.Amer.Chem.Soc., 1982, 104, 4708; S.D. Street, C. Yeates, P. Kocienski and S.F. Campbell, J.Chem.Soc., Chem.Commun., 1985, 1386, 1388; S.V. Attwood, A.G.M. Barrett, R.E.A. Carr and G. Richardson, J.Chem.Soc., Chem.Commun., 1986, 479
- S. Hanessian, A. Ugolini and M. Therin, J.Org.Chem., 1983, 48, 4427;
 R. Baker, J.C. Head and C.J. Swain, J.Chem.Soc., Chem.Commun., 1985, 309;
 M. Prashad, B. Fraser-Reid, J.Org.Chem., 1985, 50, 1564;
 M.E. Jung and L.J. Street, J.Amer.Chem.Soc., 1984, 106, 8327;
 M.J. Hughs, E.J. Thomas, M.D. Turnbull, R.H. Jones and R.E. Warner, J.Chem.Soc., Chem.Commun., 1985, 755;
 M.T. Crimmens and J.G. Lever, Tetrahedron Lett., 1986, 27, 291;
 A.P. Kozikowski and K.E. Malony Huss, Tetrahedron Lett., 1985, 26, 5759
- 6. J.A. Scheider and W.C. Still, Tetrahedron Lett., 1980, 21, 1035
- R. Baker, R.H.O. Boyes, D.M.P. Broom, J.A. Devlin and C.J. Swain, J.Chem.Soc., Chem.Commun., 1983, 829
- D.A. Evans, M.D. Ennis and J.J. Mathre, <u>J.Amer.Chem.Soc.</u>, 1982, <u>104</u>, 1737
- 9. K. Mori and S. Senda, <u>Tetrahedron</u>, 1984, 41, 541
- D.A. Evans and R.L. Dow, <u>Tetrahedron Lett.</u>, 1986, <u>27</u>, 1007.
 (Received in UK 23 April 1986)